If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2-100=9
We move all terms to the left:
3x^2-100-(9)=0
We add all the numbers together, and all the variables
3x^2-109=0
a = 3; b = 0; c = -109;
Δ = b2-4ac
Δ = 02-4·3·(-109)
Δ = 1308
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1308}=\sqrt{4*327}=\sqrt{4}*\sqrt{327}=2\sqrt{327}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{327}}{2*3}=\frac{0-2\sqrt{327}}{6} =-\frac{2\sqrt{327}}{6} =-\frac{\sqrt{327}}{3} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{327}}{2*3}=\frac{0+2\sqrt{327}}{6} =\frac{2\sqrt{327}}{6} =\frac{\sqrt{327}}{3} $
| (4)x/2=2 | | 10m^2=89m-9=0 | | 19a–-6a–6=7 | | 2x2+20x-4=0 | | x4-6x2=-8 | | -19a–-6a–6=7 | | 2x-0.67(4x-12)=x+7 | | 3k+4k-6=15 | | -2(y-6)=-7y-3 | | 9x^2+21x-120=0 | | -2=-4/b | | 24=-7y+5(y+2) | | -3(5n-1)=13-15n | | 5=2+3r-6 | | 45/5b=100 | | u+15=10 | | 5+4b=100 | | 3(r)=25-3r | | w-21=-11 | | -1x-10=-20 | | 18=9(x=8) | | 6k-8=4k | | 0.5(1-x)(1-2x)=0 | | 5+-4b=45 | | -3x2+2x-3=0 | | 2m=6-4 | | 45=15-6x | | -2x2-20x-32=0 | | 3(n-5)=3n-18 | | 5+6k=5+k | | 4|5-t|=20 | | w-21=-21 |